THE SYNTHESIS AND EVALUATION OF MERCURIAL (II) ACETATES AND RELATED TRIPHENYL PHOSPHINE COMPLEXES AS HIGH-TEMPERATURE LUBRICANT ADDITIVES

Stanley Dec

December 1963

Air Force Materials Laboratory Research and Technology Division Air Force Systems Command Wright-Patterson Air Force Base, Ohio

Task; 304405, Project: 3044

Reproduced From Best Available Copy

DISTRIBUTION STATEMENT A
Approved for Public Release
Distribution Unlimited

20000316 079

HOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned to the Research and Technology Division unless return is required by security considerations, contractual obligations, or notice on a specific document.

TM-MAN-64-4

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DAT	TES COVERED		
	DECEMBER, 1963	FINAL, 1 N	MAY 1963 - 31 OCTOBER 1963		
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS		
THE SYNTHESIS AND EVAL					
RELATED TRIPHENYL PHOS	SPHINE COMPLEXES AS HIC	H-TEMPERATURE			
LUBRICANT ADDITIVES					
6. AUTHOR(S)					
STANLEY DEC					
7. PERFORMING ORGANIZATION NAME(S)	AND ADDRESS(ES)	.,	8. PERFORMING ORGANIZATION		
AIR FORCE MATERIALS LAI			REPORT NUMBER		
RESEARCH AND TECHNOLO	OGY DIVISION				
AIR FORCE SYSTEMS COMM	MAND				
FLUID AND LUBRICANTS M	ATERIALS BRANCH				
WRIGHT-PATTERSON AFB. (9. SPONSORING/MONITORING AGENCY NA	OH 45430		10. SPONSORING/MONITORING		
AIR FORCE MATERIALS LAI			AGENCY REPORT NUMBER		
			TECHNICAL MEMORANDUM		
RESEARCH AND TECHNOLOGY DIVISION AIR FORCE SYSTEMS COMMAND MAN-64-4					
FLUID AND LUBRICANTS M					
WRIGHT-PATTERSON AFB.					
11. SUPPLEMENTARY NOTES					
12a. DISTRIBUTION AVAILABILITY STATEM	ENT		12b. DISTRIBUTION CODE		
Approved for public release; Di					
ppio de los peoses sosses, es					
13. ABSTRACT (Maximum 200 words)	and evaluate the fell	ouring compounds as no	otential additives to lubricants applied		
The purpose of this study was to	synthesize and evaluate the for	hoenhine complexes of	Mercury (II) acetate derivatives, and		
· ·) acetate derivatives, triplicayip	nospinie complexes of	wiciculy (11) acctate derivatives, and		
Mercury (II) acetamide.					
14. SUBJECT TERMS			15. NUMBER OF PAGES		
MERCURY ACETATES, LUB	RICANT ADDITIVES, WEAR		19		
			16. PRICE CODE		
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	IN 120. LIMITATION OF		
OF REPORT	OF THIS PAGE	OF ABSTRACT	ABSTRACT		
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIE	ED SAR		
OTTOE/20011 TED	CITCLINGII IDD		Standard Form 298 (Rev. 2-89) (EG)		

FOREWORD

This first semi-annual report on the internal program, "Synthesis and Eva uation of Mercurial (II) Acetates and Related Triphenyl-Phosphine Complexes as Lubricant Additives," was initiated under Project No. 3044, Task No. 304405, with Captain Stanley M. Dec acting as project engineer.

This report covers work conducted from 1 May 1963 to 31 October 1963.

The synthesis and evaluation of mercury (II) acetate derivatives and related triphenylphosphine complexes as lubricant additives.

1. Introduction

The purpose of this study was to synthesize and evaluate the following compounds as potential additives to new lubricants applied to aircraft systems:

- 1. Mercury (II) Acetate Derivatives.
 - A. CH3COO-Hg-OOCCH3
 - B. CH3CH2COO-Hg-OOCCH2CH3
 - с. сн₃сн₂сн₂соо-н_в-ооссн₂сн₂сн₃
 - D. GF3CF2CF2COO-Hg-OOCGF2CF2CF3
 - E. HOCH_COO-Hg-OOCCH_OH
 - F. ClCH2COO-Hg-OOCCH2C1
 - G. BruH2COO-Hg-OUCCH2Hr
 - н. с64200-не-оссен2
 - I. CF3COO-Hg-OOCCF3
 - J. ccl3coo-Hg-00cccl3
- 2. Triphenylphosphine Complexes of Mercury (II) Acetate Derivatives

- B. ((CH3CH2COO)2Hg)2*((P(C6H5)3)2 (bridge structure 2A)
- C. ((CH₃CH₂CH₂COO)₂Hg)₂*((P(C₆H₅)₃)₂ (bridge structure 2A)
- D. (C6H5)3P OOCCF2CF2CF3

 (C6H5)3P OOCCF2CF2CF3
- E. ((C6H5)2P)2.Hg(00CCH2OH)2
- F. $((c_6H_5)_3P)_2$ •Hg $(00CCH_2C1)_2$
- G. $((C_6H_5)_3P)_2$ •Hg $(00CCH_2Br)_2$

- 3. Mercury (II) Acetamide
 - A. CH3 CONH-Hg-HNOCC3H

The results are summerized in Tables I and II.

This study was approached through a survey of the literature in specific areas and through experimental investigations of the above compounds.

II. Preparation of Compounds

A. Synthesis of Mercury (II) Acetates

It was found that the mercurial (II) acetates could readily be prepared by the reaction of the organic acid with yellow mercuric oxide:

The general procedure involved short periods of refluxing to promote the reaction;

The reaction proceeded at room temperature with perfluorabutyric sacid.

- 1. Mercury (II) acetate was a commercial preparation obtained from Matheson, Coleman, and Bell.
- 2. Synthesis of Mercury (II) propionate. To a solution of 74.04 graffs (1 mole) of propionic acid in 150cc. of reagent grade benzene was added 102 grams (0.472 moles) of yellow mercuric oxide. The mercuric oxide was completely reacted after 30 minutes of refluxing. The colorless solution was filtered hot and allowed

to cool to room temperature. The crystallized, colorless plates were collected on a suction filter and gave 100 grams (76.5%) of product, m.p., 111.5-112.5°.

- 3. Synthesis of mercury (II) butyrate. To a solution of 88 grams (1 mole) of butyric acid in 200 cc. of reagent grade benzene was added 120 grams (0.555 moles) of yellow mercuric oxide. The reaction mixture was refluxed for 20 minutes. During this time all of the mercuric oxide was reacted. An excess of 20 grams of yellow mercuric oxide was then added and the mixture refluxed for an additional 30 minutes. The mixture was filtered hot to remove the excess mercuric oxide. The filtrate was cooled to room temperature and the precipitated solid was collected on a suction filter, yielding 110 grams (29.1%) of white plates, 70.0.0. 95-960.
- grams (0.432 moles) of chloroacetic acid dissolved in 250 cc. of reagent grade benzene was added 46.8 grams (0.216 moles) of yellow mercuric oxide. The reaction was allowed to reflux for 21 hours. The hot solution was then filtered to remove traces of unreacted mercuric oxide. The hot filtrate was treated with charcoal, refiltered, and cooled. The precipitated white solid was collected on a suction filter in 63 grams (37.7%) yield, 7%, 114-115°.
- 5. Synthesis of Mercury (II) Perfluorobutyrate. To a solution of 100 grams (0.467 moles) of perfluorobutyric acid in 250 cc. of reagent grade benzene was added 45.3 grams (0.209 moles) of yellow mercuric oxide. The reaction proceeded at room temperature, overnight, for a period of 17 hours. The reaction mixture was treated with activated carbon and filtered. The solvent and unreacted butyric acid were evaporated under vacuum and gave 90 grams (30.7%) of a pale brown liquid.

- Synthesis of Mercury (II) Benzoate. To 700 cc. of reagent grade benzene was added 40 grams (0.10 moles) of benzoic acid and 10.8 grams (0.05 moles) of yellow mercuric oxide. The reaction mixture was refluxed for two hours, filtered hot, and cooled to room temperature. The precipitated white needles were collected on a suction filter in a 41 gram (93.6%) yield, N.D. 110-112°.
- Synthesis of Mercury (II) Trifluoroacetate. To a stirred suspension of 47.2 grams (0.218 moles) of yellow mercuric oxide in 100 cc. of reagent grade benzene was slowly added 100 grams (0.435 moles) of trifluoroacetic acid dissolved in 100 cc. of benzene. Additional mercuric oxide was added until a slight excess of unreacted mercuric oxide remained. The reaction mixture was heated and treated with activated carbon. After cooling, the white crystalline solid was collected on a suction funnel and gave a 175 gram (94.3%) yield, W.F. 122-125°.
- Synthesis of Mercury (II) Trichloroacetate. To a solution of 80.5 grams (0.303 moles) of trichloroacetic acid in 250 cc. of reagent grade benzene was added 30 grams (0.138 moles) of yellow mercuric oxide. The reaction mixture was refluxed for 4 hours. At the end of this time period, the mercuric oxide was completely reacted. The reacted solution was cooled to 15° and the precipitated white crystalline solid was collected on a suction filter in a 50 gram (68.8%) yield, m.p. 127 dec.
- 19. Synthesis of Mercury (II) Hydroxyacetate. To a solution of 100 grams (1.32 moles) of hydroxyacetic acid in 250 cc. of reagent grade benzene was added 128 grams (0.595 moles) of yellow mercuric oxide. The reaction proceeded at room temperature to give a white solid. Refluxing was continued for an additional hour. After cooling, the white solid was collected on a suction filter, crystallized from hot &Cla and gave 85 grams (40.8%) of product, M.p. 114-115.

10. Synthesis of Mercury (II) Acetamide. To an Erlenmeyer flask was added 118 grams (2 moles) of acetamide and 108,3 grams (0.5 mole) of yellow mercuric oxide. The mixture was gradually heated above 180°C on a hot plate until all of the mercuric oxide was reacted. After cooling, the white solid was crystallized from hot methanol and gave 110 grams (70%) of white crystalline solid, m.p. 195°C.

B. Synthesis of Triphenylphosphine Complexes of Mercury (II) Acetates.

The synthesis of compounds of triphenylphosphine with mercury (II)

acetates was undertaken to develop additives of higher molecular weight. The derivatives synthesized were found to give two classes of compounds:

A 4-covalent complex with tetrahedral structure,

and a 4-covalent trans-symmetric tetragonal bridged structure:

These structural assignments were assigned on the basis of work performed by Mann ^{1,2} et al. on the "Addition Compounds" derived from 3-covalent phosphine with Cd and Hg II halides.

The compounds were conveniently prepared by a reaction of equal molar quantities of triphenylphosphine with the acetate in dry solvent (ether, tetrahydrofuran, or 1.4-dioxane).

1. Synthesis of Diacetato bistriphenylphosphine-w-diacetatodimercury To a solution of 33.24 grams (0.1042 moles) of mercury (II) acetate in 250 cc. of absolute ether was slowly added 20.43 grams (0.078 moles) of triphenylphosphine. The reaction mixture was shaken and cooled (to prevent product decomposition) during the addition. The reaction mixture was then stirred for 15 minutes. The precipitated white crystals were collected on a suction filter and rinsed twice with 40 cc. portions of dry tetrahydgofuran. The yield of product obtained was 50 grams (82.5%), m.p., dec.

ANAL: Calcd. For C22H21HgoLP:

%C 45.51 %H, 3.13 %O, 11.02 %P 5.16

FOUND: %C 45.62 %H, 3.91 %O, 11.14 %P 4.57

2. Synthesis of Dipropianatobistriphenylphosphine-w-dipropianatedimercury. To a solution of 5 grams (0.014 moles) of mercury (II) propionate in 40 cc of dry tetrahydrofuran (distilled from L AH4) was slowly added 3.8 grams (0.0145 moles) of triphenylphosphine. The reaction mixture was stirred and cooled during the addition to prevent product decomposition. The precipitated white crystals were collected on a suction filter, rinsed with 25 cc of absolute ether and gave 8 grams (47.0% of white solid, m.p. 263-264.5°.

ANAL; Calcd for: C₄₈H₅₀O₈P₂H_{g2}

%C 47.31 %H 4.14 %P 5.08

FOUND: %C 50.82 %H 4.52 %P 6.60

3. Synthesis of Dibutyratobistriphenylphosphine-m-dibutyratodimercury.
To a solution of 5 grams (0.013 moles) of mercury (II) butyrate dissolved in 40 cc of dry tetrahydrofuran (distilled from LiAlH₄) was slowly added, 3.5 grams (0.013 moles) of triphenylphosphine. The reaction mixture was stirred and cooled to prevent product decomposition. The precipitated white solid was collected on a suction filter and gave 7 grams (42.3%) of product, m.p., 151-152°.

ANAL: Calcd for: C₅₂H₆₀O₈P₂H_{g2}

\$C 48.99 \$H 4.58

Found: \$C 49.21 \$H 4.96

4. Synthesis of Diperfluoroscetatobistriphenylphosphinemercury. To a solution of 10 grams (0.016 moles) of mercury (II) perfluorobutyrate was slowly added, 4.18 grams (0.016 moles) of triphenylphosphine, while the temperature of the reaction flask was kept cooled to room temperature. A white solid settled out immediately. The reaction mixture was stirred and cooled to prevent product decomposition. The white crystalline solid was collected in 11 gram (63.2%) yield, mp., 220-1°.

ANAL: Calcd for: C44H30F1404HgP2

%C 45.01 %H 2.54 %P 5.38

Found: %C 45.60 %H 2.83 %P 6.44

5. Synthesis of Dihydroxyacetobistriphenylphosphinemercury. To a suspension of 5 grams (0.016 moles) of mercury (II) hydroxyacetate was slowly added 4.35 grams (0.016 moles) of triphenylphosphine. The reaction mixture was stirred, and cooled to prevent product decomposition. The white crystals were collected on a suction filter in a 8.4 gram (71.8%) yield, m.p., 195°.

ANAL: Calcd for: C40H34O6HP2

%C 54.99 %H 3.91 %P 710

Found: %C 54.08 %H 4.23 %P 6.78

6. Synthesis of Dichloracetobistriphenylphosphinemercury. To a solution of 12.01 grams (0.0124 moles) of mercury (II) chloroacetate in 200 cc of dry tetrahydrofuran (distilled from LiAlH₄) was slowly added 13.62 grams (0.0518 moles) of triphenlphosphine. The reaction mixture was stirred and cooled to prevent product decomposition. The precipitated solid was collected on a suction filter in a 11.75 gram (58.2%) yield, m.p, 192° dec.

ANAL: Calcd for: C40H34P2Hg0LCl2

%C 52.61 %H 3.76 %CL 7.79 %P 6.80

Found: %C 50;82 %H 3.64 %CL 8.21 %P 5.85

7. Synthesis of Dibenzoatobistriphenylphosphinemercury. To a solution of 10 grams (0.0226 moles) of mercury (II) benzoate in 50 cc of dry tetrahydrofuran (distilled from LiAlH_L) was slowly added 5.92 grams (0.0226 moles) of triphenylphosphine. The reaction mixture was stirred and cooled to prevent product decomposition. The solvent was evaporated and yeilded 13.9 grams (64.1%) of white crystals m.p., 204-5.

ANAL: Calcd for: C₅₀H₄₀P₂H_gO₄

%C 62.05 %H 4.16 %P 6.41 %Hg 20.64

FOUND: %C 62.40 %H 4.64 %P 6.37 %Hg 21.49

8. Synthesis of Ditrifluoroacetobistriphenylphosphinemercury. To a solution of 11.08 grams (0.025 moles) of mercury (II) trifluorocetate in 100cc of dry 1,5-dioxane (distilled from LiALH₁) was slowely added 6.81 grams (0.026 moles) of triphenylphosphine. The reaction was stirred and cooled to prevent product decomposition. The white solid was collected on a suction filter in a 10 gram (61.6%) yaeld, m.p., 230-1°.

ANAL: Calcd for: C₄₀H₃₀F₆O₄P₂ **%6** 50.51 %H 3.16 %P 6.52

FOUND: %C 50.58 %H 3.28 %P 7;57

7

9. Synthesis of Ditrichloracetatobistriphenylphosphine mercury. To a solution of 4 grams (0.0075 moles) of mercury (II) trichloroacetate in 40 cc. of dry tetrahydrofuran (distilled from LiAlH, were added 1.96 grams (0.0075 moles) of triphenylphosphine. The reaction mixture was stirred and cooled to prevent product decomposition. The solvent was evaporated and gave 4.5 grams (60.4 %) of colorless liquid (this compound decomposes on standing 1-2 days).

ANAL: Calcd. for C₄₀H₃₀Cl₆0₄HgP₂

%C, 52.88 %H, 3.22 %Cl, 7.70 %P, 6.83

Found: %C, 52.15 %H, 3.88 %Cl, 8.75 %P, 5.00

dimercury. To a solution of 1.7 grams (0.00526 moles) of mercury (II) trifluoroacetate in 50 cc. of absolute ether was added 5 grams (0.00526 moles) of diacetatobistriphenyl-phosphine-u-diacetatodimercury. The reaction mixture was stirred and cooled to prevent product decomposition. The precipitated colorless solid was collected in 2.5 gram (65.1 %) yield.

SUMMARY

Objectives The objectives of this report are:

the triphenyl phosphine complexes of mercurial (II) acetates as candidate additives for anti-oxidation, extreme pressure, and anti-wear in new lubricants. The synthetic results for the preparation of mercurial (II) acetates are tabulated in Table I.

The synthetic results for the preparation of the triphenylphosphine complexes of mercurial (II) acetates are tabulated in Table II.

Both series of compounds listed are ready for evaluation as candidate additives.

REFERENCES

- 1. R. C. Evans, Frederick G. Mann, H. S. Peiser and Donald Purdie, J. Chem. Soc. 1209 (1940).
- 2. F. G. Mann and Donald Purdie, J. Chem. Soc. 1230 (1940).

TABLE I

PREPARATION OF MERCURIAL (II) ACETATES

10.	9.	8.	7.	6	ب 5	+	U	N	۳	No.	
Mercury	Mer Liv	Mercury	Mercury	Mercury	Mercury	Mercury	Mercury	Morcury	Mercury	Compour	
(II)	(II)	(H)	(II)	(II)	(II)	(11)	(H)	(II)	(II)	ĮĐ.	
acetamide	hydroxyace tate	trichlorace tate	trifluoroacetate	benzoate	perfluorobutyral	chloroacetate	butyrate	propionate	acetate	str.	
(CH ₃ COMH) ₂ Hg	(HOCH2COU)2Hg	(cc1 ₃ cou) ₂ Hg	в (СЕ3COO)2Hg	(с6н ⁵ соо) ⁵ нв	te (CF3CF2CF2COO)2Hg	(C1CH2COO)2Hg	(CH3CH2CH2COV)2Hg	(CH3CH2COO)2HE	(CH3C00)2Hg	icture	PREFARALION OF THE
white solid	white solid	white solid	white solid	white solid	pale brown liq.	white solid	white solid	white solid	white solid	Physical State	FREFARATION OF MEMOURIAL (11) AUDIALDO
70.0	40.8	68.8	94.3	93.6	30.7	37.7	29.1	76.5	•	% Y1e1d	
	Mercury (II) acetamide (CH ₂ CONH) ₂ Hg white solid	white solid	Mercury (II) trichloracetate (CCl ₃ COO) ₂ Hg white solid Mert (II) hydroxyscetate (HOCH ₂ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ CONH) ₂ Hg white solid	Mercury (II) trifluoroacetate (CF3COO) ₂ Hg Mercury (II) trichloracetate (CCl ₃ COO) ₂ Hg ury (II) hydroxyacetate (HOCH ₂ COO) ₂ Hg Mercury (II) acetamide (CH ₃ CONH) ₂ Hg white solid	Mercury (II) benzoate (C6H5C00)2Hg white solid Mercury (II) trifluoroacetate (CF3C00)2Hg white solid Mercury (II) trichloracetate (CC13C00)2Hg white solid Mercury (II) hydroxyacetate (HOCH2C00)2Hg white solid Mercury (II) acetamide (CH3COMH)2Hg white solid	Mercury (II) perfluorobutyrate (CF ₃ CF ₂ CF ₂ CCO) ₂ Hg pale brown liq. Mercury (II) benzoate (C6H ₅ COO) ₂ Hg white solid Mercury (II) trichloracetate (CF ₃ COO) ₂ Hg white solid Mercury (II) trichloracetate (CCl ₃ COO) ₂ Hg white solid Mercury (II) hydroxyacetate (HOCH ₂ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid	Mercury (II) chloroacetate (CIGH ₂ COU) ₂ Hg white solid Mercury (II) perfluorobutyrate (CF ₃ CF ₂ CF ₂ COO) ₂ Hg pale brown liq. Mercury (II) benzoate (C ₆ H ₅ COO) ₂ Hg white solid Mercury (II) trichloracetate (CCl ₃ COO) ₂ Hg white solid Mercury (II) hydroxyacetate (CCl ₃ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid	Mercury (II) butyrate $(CH_2CH_2COU)_2Hg$ white solid Mercury (II) chloroacetate $(CLH_2COU)_2Hg$ white solid Mercury (II) perfluorobutyrate $(CF_3CF_2CF_2COU)_2Hg$ pale brown liq. Hercury (II) benzoate $(CH_3COU)_2Hg$ white solid Mercury (II) trifluoroacetate $(CF_3COU)_2Hg$ white solid Mercury (II) trichloracetate $(CL_3COU)_2Hg$ white solid Mercury (II) hydroxyacetate $(EDGH_2COU)_2Hg$ white solid Mercury (II) acetamide $(CH_3COU)_2Hg$ white solid White solid	Mercury (II) propionate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) butyrate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) chloroacetate (ClCH ₂ COO) ₂ Hg white solid Mercury (II) perfluorobutyrate (CF ₃ CF ₂ CF ₂ COO) ₂ Hg pele brown liq. Hercury (II) benzoate (C ₆ H ₅ COO) ₂ Hg white solid Mercury (II) trichloracetate (CF ₃ COO) ₂ Hg white solid Mercury (II) hydroxyacetate (EOCH ₂ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid	Mercury (II) acetate (CH ₃ COO) ₂ Hg white solid Mercury (II) propionate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) butyrate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) chloroacetate (ClCH ₂ COO) ₂ Hg white solid Mercury (II) perfluorobutyrate (CF ₃ CF ₂ CF ₂ COO) ₂ Hg pele brown liq. Mercury (II) trifluoroacetate (CH ₃ COO) ₂ Hg white solid Mercury (II) trichloracetate (CH ₃ COO) ₂ Hg white solid Mercury (II) hydroxyacetate (CCl ₃ COO) ₂ Hg white solid Mercury (II) hydroxyacetate (CCl ₃ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COO) ₂ Hg white solid	Mercury (II) scetate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) butyrate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) butyrate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) chloroacetate (CH ₃ CH ₂ COO) ₂ Hg white solid Mercury (II) perfluorobutyrate (CF ₃ CF ₂ CF ₂ COO) ₂ Hg pale brown liq. Hercury (II) trifluoroacetate (CF ₃ COO) ₂ Hg white solid Mercury (II) trichloracetate (CH ₃ COO) ₂ Hg white solid Mercury (II) trichloracetate (CH ₃ COO) ₂ Hg white solid Mercury (II) hydroxyscetate (HOCH ₂ COO) ₂ Hg white solid Mercury (II) acetamide (CH ₃ COMH) ₂ Hg white solid

TABLE II

PRODUCTS OBTAINED FROM TRIPHENYLPHOSPHINE AND VARIOUS MERCURY (II) ACETATES

4. (c£3c£3c£2co	3- (сн ₃ сн ₂ сн ₂ со	2. (CH ₃ CH ₂ COO) ₂	1. (0H ₃ 000) ₂ H ₆	Resotant with fripheayl-
4. (CF3CF3CF2COO)2Hg Diperfluoro- acetatobistri- phenylphosphiae- mercury	3. (CH ₂ CH ₂ COO) ₂ Hg Dibutyrato bistriphenyl-phosphine-u-dibutyrato-dimercury	2. (CH_CH_COO)2Hg Dipropienato- bistriphenyl- phosphine-u- dipropienato- dimercury	(CH3COO)2Hg Discetstobistri- phenylphosphine -u-discetstodi- mercury	Product
	CH3CH2CH2COU	CH3 CH3 COO o C P(C6H5)3 (C6H5)3 P Q O OOCCH2 CH3 (C6H5)3 P Q O OOCCH2 CH3	CH ₂) ₃ P ^L Ch ₃	Structure
(c ₆ H ₅) ₃ P, oocce ₂ ce ₂ ce ₃ 63.2	P(C6H5)3 4	P(C6H5)3	P(C6H5)3	l aé
3 63.2	\$\frac{1}{12}\$	47.0	8 2 . 5	% Yield
220-1	151-2	264.5	dec.	M.P.
220-1 45.01	48.99	47.31	45-51	1
45.60 2.54	49.21	47.31 50.82		Carbon, %
2.54	4.58	4-	45.62 3.13	
2. 6 3	4.96	4.52		Analysis Hydrogen, % Calcd. Found
2.83 5.38		5.08	3 .91 5.16	-
6-44		6.60	4.57	Phosphorous, %
-64-4		15		

TM-MAN-64-4

9. (cc1 ₃ coo) ₂ Hg	9. (CF COO) Hg D 3 2 b	7. (¢6Hzcoo)2Hg	6. (c1cH2coo)2Hg	5. (HOCH_COO)2Hg	Reactant with Triphenyl-
Ditrichloro- bistriphenyl- phosphine mercury	itrifluorencetato istriphenylphosphi ercury	Dibenzoato- bistriphenyl- phosphine wercury	Dichloroscetato- bistriphenyl- phosphine mercury	Dinydroxyeceteto- bistriphenyl- phosphine mercury	Product
(chy) Pyre ooccol	Ditrifluorencetato (C ₆ H ₅) ₃ P 00CCF ₃ bistriphenylphosphine (C ₆ H ₅) ₃ P 00CCF ₃ mercury (C ₆ H ₅) ₃ P	Dibenzoato- (C6H5)3P MC 00CC6H5 bistriphenyl- (C6H5)3P MC 00CC6H5 phosphine mercury (C6H5)3P 00CC6H5	с ⁶ н ²) ³ 1 соссн ² ст	(с6H ²) ³ ь не ооссн ² он	Structure
4. 09	61.ó	64.1	58 . 2	71.8	% Yield
liq.	231 230-	204-	192 dec.	195	P.
52.88	50 -51	62.05	20.62	54-99	Carbon, %
52.88 _52.15 3.22	50.51 50.58 3.16	62.20 4.16	52.61 50.82 3.76	54.99 54.08 9.91	uad
3.88	<u>မ</u> 20	4.64	3.64 6.80		Hydrogen, %
	3.28 6.52	4-64 6-41		4.23 7.10	Phospi Calcd.
	7.57	6.37	5.85°	6.78	Phosphorous, % Galcd. Found

16

m ann

TABLE (II) (cont'd)

No.	Resctant with Triphenyl- No. Phosphine	Ppoduct	Structure	F6		% Yield	40	Corbon, % Calcd. Fo	70.70%	Analysis Carbon, % Hydrogen, % Paosphorous, Caled. Found Caled. Found	Found	Phosphorous, Calcd. Found	Found
٨	5. (носн ₂ соо) нв	Dihydroxyacetato- bistriphenyl- phosphine mercury	(c ₆ H ₅) ₃ P	# 6	ооссн он	71.8	195	54.99 54.08 3.91	54•0		£.23	7.10	6.78
6.	6. (cach ₂ coo) ₂ ng	Dichloroscetato- bistriphenyl- phosphine mercury	(C _H 5) ₃ P	6	00 cch ² ct	58.2	192 dec•	52.61 50.82 3.76	50.8		3.64 6.80		5.85 b
7.	7. (c ₆ H ₅ cwo) ₂ Hg	Dibenzoato- bistriphenyl- phosphine mercury	(c ₆ H ₅) ₃ P	器	5 _H 92200 5 _H 92200	64.1	204 -	62.05 62.20 4.16	62.2	0 4.16	4.64 6.41		6.37
~ &	8. (cF ₃ cco) ₂ Hg	Ditrifluoroscetato- (C,H)P bistriphenylphos- (C,H)P	(CH) P	He	ooccr ₃	61.6	23 0-	50.51	50•5	50•51 50•58 3•16	3.28 6.52		7.57

phine mercury

(c_H)₃p

CTCCF

9. (cc1₃coo)₂Hg

Ditrichloro-bistriphenyl-

phosphine mercury

4 (H 4)

ပ္ပင္ဆင္သင္

(c₆H₅)₃P

ooccc13

60.4

liq.

52.88 52.15 3.22

3.86

a Oxygen present: Calcd. 11.02; Found, 11.14. b Chlorine present: Calcd. 7.79; Found, 8.21.

TABLE II A

PREPARATION OF DITRIFLUOROACETATOBISTRIPHENYLPHOSPHINE

Carbon, % Hydrogen, %	3- 41.60 41.87 2.84 2.92 3
% Yield M.P.	65•1 189- 190
Structure	$c_{F_3}c_{500}$ c_{50} c_{50} c_{70}
Diacetato- losphine mercury Product	Ditrifluorencetato bistriphenylphosphine -u-diacetato-dimercury
Reactant with Diacetato-	1. (CH COO) HE

18